首页> 外文OA文献 >Sensor Placement for Optimal Kalman Filtering: Fundamental Limits, Submodularity, and Algorithms
【2h】

Sensor Placement for Optimal Kalman Filtering: Fundamental Limits, Submodularity, and Algorithms

机译:用于最佳卡尔曼滤波的传感器放置:基本限制,   子模块和算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we focus on sensor placement in linear dynamic estimation,where the objective is to place a small number of sensors in a system ofinterdependent states so to design an estimator with a desired estimationperformance. In particular, we consider a linear time-variant system that iscorrupted with process and measurement noise, and study how the selection ofits sensors affects the estimation error of the corresponding Kalman filterover a finite observation interval. Our contributions are threefold: First, weprove that the minimum mean square error of the Kalman filter decreases onlylinearly as the number of sensors increases. That is, adding extra sensors soto reduce this estimation error is ineffective, a fundamental design limit.Similarly, we prove that the number of sensors grows linearly with the system'ssize for fixed minimum mean square error and number of output measurements overan observation interval; this is another fundamental limit, especially forsystems where the system's size is large. Second, we prove that the logdet ofthe error covariance of the Kalman filter, which captures the volume of thecorresponding confidence ellipsoid, with respect to the system's initialcondition and process noise is a supermodular and non-increasing set functionin the choice of the sensor set. Therefore, it exhibits the diminishing returnsproperty. Third, we provide efficient approximation algorithms that select asmall number sensors so to optimize the Kalman filter with respect to thisestimation error ---the worst-case performance guarantees of these algorithmsare provided as well. Finally, we illustrate the efficiency of our algorithmsusing the problem of surface-based monitoring of CO2 sequestration sitesstudied in Weimer et al. (2008).
机译:在本文中,我们专注于线性动态估计中的传感器放置,其目的是将少量传感器放置在相互依赖的状态系统中,以便设计具有所需估计性能的估计器。特别是,我们考虑了一个线性时变系统,该系统会受到过程和测量噪声的破坏,并研究其传感器的选择如何在有限的观察间隔内影响相应的卡尔曼滤波器的估计误差。我们的贡献是三方面的:首先,我们证明卡尔曼滤波器的最小均方误差仅随着传感器数量的增加而线性减小。也就是说,增加额外的传感器以减少这种估计误差是无效的,这是一个基本的设计限制。同样,我们证明了对于固定的最小均方误差和在一个观察间隔内的输出测量数量,传感器的数量与系统的大小呈线性增长。这是另一个基本限制,特别是对于系统大小较大的系统。其次,我们证明了卡尔曼滤波器的误差协方差的logdet捕获了相对应的系统初始条件和过程噪声的置信椭圆体的体积,这是传感器集选择中的超模块化和非递增集函数。因此,它表现出递减的财产。第三,我们提供了选择少量传感器的高效近似算法,以便针对该估计误差优化卡尔曼滤波器-同时,也提供了这些算法在最坏情况下的性能保证。最后,我们利用Weimer等人研究的基于表面监测CO2隔离位点的问题来说明算法的效率。 (2008)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号